Master 2.21 Extra Practice 4

Lesson 2.4: Developing Rules to Divide Integers

1. a) Evaluate each expression.

Multiplication

$(+4) \times(-2)=$
$(-3) \times(+5)=$
$(-2) \times(-3)=$
$(+3) \times(+6)=$
$(+3) \times(+6)=$
Look at the patterns in the signs in part a.
How are the rules for the sign of a quotient of two integers related to the rules for the sign of a product of two integers?
2. a) When is the quotient of two integers positive?
b) When is the quotient of two integers negative?
3. Divide.
a) $(-100) \div(-10)$
b) $(-72) \div(+9)$
c) $(+56) \div(-7)$
d) $(-42) \div(-6)$
e) $(0) \div(-6)$
f) $(-9) \div(-9)$
4. Find each quotient. Then order the numbers from least to greatest.
a) $(+10) \div(-2)$
b) $(-15) \div(-5)$
c) $(-36) \div(+12)$
d) $(0) \div(-10)$
е) $(-8) \div(-8)$
f) $(-48) \div(+12)$
5. Maya recorded the noon temperature each day for a week.
$-12^{\circ} \mathrm{C},-8^{\circ} \mathrm{C}, 3^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 1^{\circ} \mathrm{C},-3^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C}$
What was the mean temperature?

Master 2.22 Extra Practice 5

Lesson 2.5: Order of Operations with Integers

1. Evaluate. State which operation you do first.
a) $8 \times 5-4$
b) $(-4)[(-4)+9]$
c) $18 \div[(-7)-2]$
d) $(-3)+(-14) \div(-2)$
2. Evaluate. Show all steps.
a) $4(-8)-9$
b) $(-1)+(-20) \div 5$
c) $(-9)+(-4)(-2)$
d) $(-3)[(-8)-11]$
3. Evaluate.
a) $\frac{(-5)+(-9)}{2}$
b) $\frac{-12}{(-2)(-3)}$
c) $\frac{24 \div(-6)-1}{-5}$
d) $\frac{36}{(-5) \times 2+4}$
4. Evaluate.
a) $(-72) \div 9+4 \times(-3)$
b) $5(-2)-63 \div(-7)$
c) $\frac{4(-5)+[28 \div(-4)]}{5 \times(-2)+1}$
d) $\frac{4 \times(-4)+(-8)}{[10+(-1)]+[2 \times(-3)]}$
5. Evaluate each expression. Then insert one pair of square brackets in each expression so it evaluates to -1 .
a) $12 \div(-4)+(-8)$
b) $(-9)+6 \div 3$
c) $5 \div(-5) \times 0+1$
